FACILITY FORM 602

NASA CONTRACTOR NASA CR-61195
REPORT

February 1968

GPO PRICE $

mn

]

° CFSTI PRICE(S) $

1

5

;Jﬂ Hard copy (HC) j L O

< . -
Z Microfiche (MF) LE5

# 653 July 65

MATHEMATICAL WIND PROFILES

Prepared under Contract No. NAS 8-5380 by
Arnold Court, Robert R. Read and Gerald E. Abrahms

LOCKHEED-CALIFORNIA COMPANY

N68-18488

(ACCESSION NUMBER)

\
I?Pl:\GES) (Cob! g
AN
(NASA CR O TMX OR AD NUMBER) (CATEGORY)

For

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER
Huntsville, Alabama




February 1968 NASA CR-61195

MATHEMATICAL WIND PROFILES
By

Arnold Court, Robert R. Read and
Gerald E. Abrahms

Prepared under Contract No. NAS 8-5380 by
LOCKHEED-CALIFORNIA COMPANY

For

Aero-Astrodynamics Laboratory

Distribution of this report is provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER



MATHEMATICAL WIND PROFILES?

By
Arnold Court, Robert R. Read,® and Gerald E. Abrahms

Office of the Chief Scientist
Lockheed-California Co.
Burbank, California

ABSTRACT

Augmented Fourier polynomials, in which constant and linear terms
have been added to a complex Fourier series, appear to offer a means
for representing the vertical profile of the horizontal wind velocity.
Reasons for selecting this function, and methods of its computation
and application, are given. Polynomial coefficients are presented for
mean monthly winds over Cape Kennedy, Florida, and for four consecutive
soundings over Montgomery, Alabama.
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MATHEMATICAL WIND PROFILES

SUMMARY

Augmented Fourier polynomials, in which constant and linear terms
have been added to a complex Fourier series, appear to offer a means
for representing the vertical profile of the horizontal wind velocity.
Reasons for selecting this function, and methods of its computation
and application, are given. Polynomial coefficients are presented for
mean monthly winds over Cape Kennedy, Florida, and for four consecutive
soundings over Montgomery, Alabama.

1, Introduction

Mathematical representation of the vertical profile of wind is
desirable for many purposes, and essential for the rigorous comparison
of profiles and the prediction of profiles by statistical regression
techniques. Because wind is a two-dimensional vector (meglecting the
vertical component, which is at least an order of magnitude smaller
than the horizontal components), the vertical profile of the instan-
taneous wind is a curve in three-dimensional space, The graphical and
analytical difficulties in describing such a curve have thus far pre-
vented any systematic description of complete wind profiles. 1In this
report, various possible methods of representation are explored, and
one of them, using complex Fourier series, is developed in detail.
Application of the method, and its evaluation, will be the subjects of
future reports.

Notation has been chosen carefully for consistency and clarity.
The wind speed toward the east is denoted by x, that toward the north
by y. Their vector resultant is called z, and the modulus or absolute
value of the resultant is z:

2|2 = 28 = x2 + y2, (1.1)



The direction of this resultant, in degrees clockwise from north,
is

@ = arc sin

SIS

= arc cos-% . (1.2)

This double definition eliminates the ambiguity of sign inherent in a
definition based on arc tan y/x. The meteorological convention for
angles, used also in surveying and navigation, differs from the mathe-
matical practice, in which angles are measured counterclockwise from
the x-axis (east in meteorological practice). For the mathematical
development, therefore, the direction is designated as

& =.§ - g = arc sin §-= arc cos Ea (1.3)

and hence measured counterclockwise from east.

Alternative to the Cartesian (x, y), polar (z, ), and vector (z)
representations of a wind vector is its representation as a complex
variable, {:

t=z=x+iy=ze?. (1.4)

To reduce the number of subscripts, a second wind vector will be
denoted as (u, v), (W, V), w, or = w exp (it). Height upward from
the ground will be designated as h, atmospheric density as q, true
correlation as p and its sample estimate as r, true variance as o2 and
its sample estimate as s®, and gravity as g.

The complex conjugate of a complex number will be denoted by an
asterisk:

* -ig

¢ =x - iy = ze . (1.5

Therefore, the real and imaginary parts of the complex number { are

& + t* ig -ig
R(E) = L‘Z L ..8 ; £ =2z cos g = x,
(1.6)
N o ig _ -ig
c@) = L,z C.e 3 £ =z sin g = y.

Other notation will be identified when used.
2




2. Representations

Because a wind profile is a curve in three-dimensional space, its
graphical representation on two-dimensional paper requires elimination
of one dimension. Various graphical methods have been used for many
years, each with some advantages and many disadvantages. The four basic
methods, illustrated in Figure 1 with mean January winds for Cape
Kennedy, Florida, are

a. each component, separately, vs height

b. speed and direction, separately, vs height
c. velocity hodograph

d. position hodograph.

The first two methods require mental addition of values from the
two lines to give a picture of the actual wind vector and its changes.
This difficulty is eliminated in the hodographs, in which the vertical
dimension (or time) is indicated only by successive points along the
path.

A hodograph is a curve connecting the end-points of successive
vectors drawn from a common origin. The vectors may be successive in
height, to represent the wind profile, or in time, to show the time
variation of wind. The former application is used here, but the mathe-
matical formulation is equally applicable to the time series case. The
vectors may represent the actual wind velocity at each level, or they
may represent the integral of-the velocity, which gives the position of
an object, such as a balloon, rising with constant speed through the wind
field. The usual plotting-board representation of a pilot balloon tra-
jectory is a position hodograph of the vertical wind profile, while the
similarity trajectory of a constant-level balloon is a position hodo-
graph of the time variation of wind. A position hodograph can be pre-
pared from wind velocity information by plotting the successive vectors
additively rather than from a common origin,

Hodographs appear more suitable for mathematical representation
of the vertical wind profile than separate representations by components,
or by speed and direction. But choice between the two hodographs, veloc-
ity and position, is more difficult. Fortunately, the computational
procedures of fitting a function to observations are the same for either
type of hodograph, since the purpose is merely to obtain an analytic
function describing the curve.
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When positions actually are measured (as in most meteorological
observations using balloons, rising or falling), the position hodograph
should be fitted. One differentiation of the fitted function then will
give the velocity hodograph function, and a second differentiation the
wind shear, which is of considerable importance. Actually, most routine
wind information is obtained from finite differences of balloon positions,
and shears from finite differences of these computed velocities, i.e., by
smoothed second differences of the basic observations.

When wind velocities are obtained directly, as by sound ranging, the
velocity hodograph should be fitted. One differentiation then will yield
shears, while integration gives the positions to which they apply. Such
positional information is needed for studies of the trajectories of falling
or suspended objects, such as radioactive fallout or toxic pollutants.

Any mathematical function used to approximate a hodograph must be
continuous and have continuous first and second derivatives. Since the
hodograph is a vector-valued function z(h) of a scalar argument, h, in
practice, representation by components is more convenient. Compactness
of representation and relative ease of manipulation make the complex
form,

x(h) + iy(h), z(h) exp [ig(h)],
suited for an attempt at developing an expression for z(h).

3. Functions

Selection of a mathematical function to approximate the vertical
wind profile, as represented by its position or velocity hodograph, must
be based largely on convenience and general suitability, including pos-
session of continuous derivatives. Meteorological theory and hydrodynamic
theory are as yet inadequate to provide a definitive functional form,
except for certain height ranges.

In the lowermost ten meters of the atmosphere, air flow increases
with height without material change in direction (Hess, 1959) [2]. When
the temperature lapse rate is neutral, the logarithmic wind profile
appears to fit available observations:

z = ”—11/;‘1- 1n %‘— (3.1)
(¢}



where 7 is the eddy stress, q the density, k von Karman's constant, and
ho a "roughness parameter." When the lapse rate is not neutral, an
exponential profile seems more appropriate:

z = z1(h/h )™ (3.2)

where z, is the wind speed at height h; (usually a few centimeters) and
m is a positive exponent less than unity. A generalization, for variable
lapse rates, is offered by the Deacon profile:

1-B
R )

For several hundred meters above this boundary layer, wind increases
in speed with height, and turns clockwise, in the northern hemisphere,
generally according to the Ekman spiral, At about the 10-meter level,
the wind is directed toward the left of the geostrophic wind, which blows
along the isobars at 1 km or higher. The wind vector at height h in
this spiral or friction layer is

2(h) = z [ei¢ L ei(ah'¢>}. (3.4)

Here z, is the magnitude of the geostrophic wind, blowing at an angle ¢
(in mathematical notation) to the positive x-axis, and a is a function
of density, Coriolis force, and eddy viscosity. Actual winds do follow
this Ekman spiral when the upper wind flow is straight or only slightly
curved, and the lowermost kilometer of air has no appreciable horizontal
gradients of temperature,

Above the spiral layer, wind speed generally increases with height
up to the level of maximum wind, which usually occurs slightly below
the tropopause at 10 to 12 km. Often the increase in speed with height
is at about the same rate as the decrease of density with height, so
that between 5 and 10 km "Egnell's law'" states that the momentum is con-
stant. A justification of this empirical rule, deduced from cloud and
pilot balloon observations 70 years ago by Clayton in Massachusetts and
Egnell in France, was offered by Humphreys (1929, pp. 135-136) [1].




Above the maximum wind layer, wind speed decreases with height to
a minimum, on the average, at 22 to 25 km, but no law or rule describing
this decrease, or the accompanying change in direction, has yet appeared.
Thus, while some theoretical formulations are available for wind behavior
in the boundary and spiral layers, a few guidelines can be found for the
form of a function to describe the wind profile above 1 km,

4, Series

In the absence of any theory on which to base a functional form for
wind profile description, some empirical function must be chosen., Togical
candidates for this purpose are polynomials. The wind vector z = (x, ¥)
could be represented as a function of height, h, by two separate poly-
nomials, one for each component:

m n
k k
th=Zakh, yhn=zbkh (4.1)
3 b
k=0 k=0

where m and n are the numbers of terms required for satisfactory fit or
agreement of the polynomial with the observations. Agreement would be
determined by the variance (mean squared difference) of the observations
about the polynomials. The absolute or unconditional variances are,
respectively, §% and sj, and the conditional variances si’m and s§,n:

s2 = v7? Z (xp - x)2= vt z xS - (x)3,
(4.2)

2 - -1 _ 2 . -1 2 -1 _
Sx,m v }:(xh xh,m) v }: *h tv E:xh,m(xh,m 2xh)’
and similarly for s? and si,n. (All summations are for h =0, 1, 2, ...,

N, and v = N+ 1, The extent to which the variance of x is reduced
by use of an m-term polynomial is

s

i - si m vt j{:xh,m (xh,m - th) - ®= (4.3)




Of greater interest than this absolute reduction in variance is the

relative reduction, or squared correlation (sometimes called the coef-
ficient of determination):

- 5% Z{:Xh,m (Xh,m B th) - v(®*®
2 T . (4.4)

X,m s2
X Z Xﬁ - V(;()E

Similar expressions yield the absolute and relative reductions in the
variance of y.

As more and more polynomial terms are used, i.e., as m and n
increase, the variance reduction increases and the correlations approach
one, attaining this value for m = y = n. But when r2 = .9, the fit of
the polynomial to the observations is considered adequate for most pur-
poses, although in some cases values as high as .95 are desired.

However, the various terms of the polynomials may not be equally
effective in reducing the variance. A higher power, such as a4h4, may
be more effective than a lower one. Hence, the terms should be chosen
not in simple order, but according to the amount of variance reduction
that they provide.

A more efficient polynomial, in the sense of having fewer terms,
would be formed from those terms, regardless of their exponents, pro-
viding the greatest reduction in variance, or highest correlation, The
various terms, akhk, should be arranged according to their contribution
to the variance reduction. Coefficients ordered in this way may be
denoted as a(k)h(k), and the first m of them will be considered to form
the index set M.

In this notation, the polynomial providing the required (e.g., 90%)
relative reduction in variance 1is

m
*h,M Z a(k)h(k) - 2 akhk: (4.5)
(=1 keM

and similarly for YhoN
b




Such polynomials would provide suitably efficient procedures for
representing each of the components separately. But they offer no link

between the components; they do not apply to the wind vector itself,
When results obtained by two such polynomials are combined to provide
estimates of the wind vector at each level, excessive interlevel shears
could be indicated. Hence, they do not seem particularly suited for the
mathematical representation of wind vectors.

The same objections apply to the fitting of a complex variable by
a single power series with complex coefficients:

_ k _ . kN k. k
gh,M_chh_Z(ak+lbk)h—Lakh+lzbkh. .4
keM keM KeM keM

These objections to expressing the wind components as polynomial
functions of height apply regardless of the method of estimating the
polynomial coefficients. Orthogonal polynomials, while possessing the
great advantage that they need not be recomputed after selection of the
highest-order term contributing significantly to the variance reduction,
are no better in these respects than simple power series.

5. TFourier

Complex trigonometric polynomials (Fourier series) are not subject
to the same drawbacks as univariate polynomials, just discussed. The
estimation of the coefficients of each component (i.e., the real and
imaginary parts) is based on both components of the observed wind, and
hence such a complex series actually estimates the vector, or entire
complex number, rather than separate components.

Fourier series often are used to represent functions known to be
periodic, but are not restricted to such use., Lighthill (1960) [3]
declares (p.4) that a common application is "to represent a function
which is not periodic, but instead is defined in the first place omnly
in a restricted interval," covering perhaps 30 km in the vertical.
Wind information usually is available only for a restricted interval.
Description of the time and space variations in such a 30-km profile
may be possible through the fitting of Fourier series or polynomials.

Such polynomials, however, have no linear terms. Since the wind
often increases rather regularly with height, at least over certain
height ranges, a linear term obviously is desirable in any expression
for the vertical wind profile. This can be provided by defining a plane
about which the actual wind observations vary, and then describing such

9



variations by Fourier polynomials. The required plane is defined by
two intersecting straight lines, in the vertical x, h and y, h planes,
respectively, that represent the individual wind components,

The original observations of the wind at level h,

Ch =X, + i Yy = %, ©XP (ig), 5.1

may be expressed in terms of the least squares linear trends as

¢ = €, T dooh + - (5.2)
The departure
nh = uh + i vh
is given by
“n T % T % T ®oo b, VAT Yh T CY ] b°°h. -3

The linear coefficients - reasons for the double zero subscripts will be
apparent later - are

DESEREDN IESDEDE
800 - ? boo - _ :
v Z(h-ﬁ)z vZ(h-h)Z

The constant terms are

(5.4)

c =% -a_h, c. =y -b_h. (5.5)

10




Thus, the variations of the wind vector about the least squares plane
are

T C’h - (E - dooﬁ) - dooh’ (5.6)

where dpg = 259 + 1 boo is obtained from (5.4).

Fourier polynomials describing np, are

ﬂh,M = z{: dj exp (iA jh), A = 2x/v. (5.7)
jeM

The complex coefficients dj =aj+ i b; are estimated (as explained in
Appendix A, and discussed in the next section) from the v values of T
obtained from the v observations of {;. Summation is over the set M
of the m terms contributing most to the reduction in variance, as dis-
cussed in the previous section for univariate polynomials.

After the {d } have been estimated and the set M chosen, the
resulting Fourier polynomlal can be augmented by the constant and linear
terms to provide a complete expression for the actual wind profile:

ChM =

3

g+d (h-h)+ Z d; exp (i jh). (5.8)
jeM

Application of this expression for the wind profile to actual wind
observations is discussed in the following sections.

6. Properties

Expansion of (5.7) shows that the estimation of each component
of the wind vector Th,M and hence of {p M» involves coefficients from
both the real and 1mag1nary parts of the polynomial:

nh,M = zgj(aj + i bj)(cos A jh+ i sin A jh) = (aj cos A jh - bj sinA jh)

jeM

207

i zg:(bj cos A jh + aj sin A jh). (6.1)
jeM
11




The least squares estimators of the complex coefficients dj are,
as shown in Appendix A,

N
, _1 an .
d,.=a,+1b, = » ZE: T, ©XP (- iA jh)
h=0

< |-
[~1=
F

+ i yh) (cos A jh - i sin A jh) (6.2)

< |~

N
(u.h cos A jh+vh sin A jh) + i-]'\; Z(Vh cos A jh - u sin A jh).
=0 h=0

That these estimators actually minimize the sum of the squared depar-
tures of the observations from the least-squares regression plane is
shown in Appendix A. These squared departures are the sums of the
squared departures of the two components; divided by v, the total
number of observations, they yield the conditional variance about the
polynomial:

< |-

N N
2 _ ez _ 2 _ _ - *
Gn;M sn;M _Z Sq,h;M —Z (nh ”h;M) (nh "h;M) . (6.3)
h=0 h=0

A major purpose of this study is to determine the magnitude of
the absolute reduction in variance, ¢2 - oZ.y and the relative reduc-
tion, rZ.y (4.4), when a wind profile, from which v obsérvations are
obtaineg’at equal height intervals, is approximated by (5.8) for m = 4,
If the representation is adequate, Qh, may be evaluated for any value
of h, not necessarily those equally-spaced values at which ¢y, was
observed. This would provide a continuous representation of a wind
profile originally described for discrete points only.

In addition, the function (5.8) can be differentiated to provide
a continuous representation of the wind shear, 9f}.y/Op. Alternatively,
the ¢; may be the balloon positions at successive heights, and dif-
ferentiation then will provide wind speeds at any height,

12




Not only do the coefficients {dj}, estimated by (6.2), minimize
SZ;M, but, as discussed in Appendix B, they seem to be approximately
orthogonal, although the precise extent of any slight dependence
between them is still to be determined.

Orthogonality insures that for any set {M} of coefficients,

§2 = Z s2 |
1,M 1,37

that is, that the contribution of each term to the total variance

does not depend on what other terms are included in that total. This
desirable property has been assumed in the preliminary applications of
Fourier polynomials to the description of wind profiles.

Orthogonality properties are increased when the original observa-
tions gh’ expressed as departures Th from the least-squares plane, all
have the same variance. Thus, rather than 7, as defined by (5.6), com-
putations of dj by (6.2) should use nh/cr‘h: where o2, is the variance

- ] . 121 yH .
pe Since ny is, by (5.6), a linear function of {;,, their variances
are the same. Such variances should be used, when available, to adjust
the values of 1;, as just indicated.

When the original observations th = %y + 1 yp are means, as for
a month or season, variances are available for such adjustment. But
when they are single observations,the proper choice of values is not
obvious. In the following sections, examples are given of profiles
computed from mean values adjusted for variance, and of profiles fitted
to individual sets of observations without variance adjustment. The
propriety of this second procedure, although it seems to provide an
adequate fit, requires further investigation.

Another topic for further study is the method of computing the
plane about which the departures Ty, are taken. The Fourier poly-
nomials may provide an even better approximation to the observations
if this trend plane is constructed through the mean point so that the
first and last observations (lowest and highest wind observations) are
equidistant from it.

13



7. Applications

Augmented Fourier polynomials, as developed in the preceding two
sections, were fitted to two sets of wind data to determine whether the
method showed sufficient promise to warrant further study and develop-
ment, Results of such application, presented in this section, are quite
encouraging.,

One set of wind data was composed of monthly mean winds, at l-km
levels, over Cape Kennedy, Florida. They are based on 5 years of observa-
tions (the first 321 days were at nearby Patrick Air Force Base), 1956-
1961, Missing observations had been interpolated before averaging, so
that sample sizes were the same at all levels. These data were furnished
by Mr. Orvel E. Smith of the Aero-Astrodynamics Laboratory, George C.
Marshall Space Flight Center, in advance of publication,

The other set was made up of four consecutive observations, at
6-hour intervals, over Montgomery, Alabama, on 9 January 1956, These
were the first four consecutive soundings, each reaching to at least
25 km, in an extensive compilation of winter and summer soundings fur-
nished by the National Weather Records Center, U. S. Weather Bureau, at
Mr. Smith's request, These soundings also contained data on atmospheric
density, so that momentum density as well as wind speed could be fitted
by augmented Fourier polynomials. (Units of momentum density, the pro-
duct of wind speed and atmospheric density, are dynes per cubic centimeter,)
These two sets of data provided a total of 20 "soundings,'" each
sounding being a set of values of {; for successive values of h, Of
these, 12 were monthly means for Cape Kennedy, four were successive wind
observations at Montgomery, and four were the corresponding momentum
density observations. For each such "sounding," the lowermost 2 km were
ignored, because of possible frictiom layer effects, as discussed in
Section 3, and only the levels from 2 to 25 km, inclusive, were used.
In the notation already developed, hy = 2 km, h; = 3 km, ..., by = 25 km.

Results of the fitting of the augmented Fourier polynomials to these
20 soundings are given in Tables 1 and 2. After the constant and linear
terms, the coefficients are presented in decreasing order of the amount
of variance "explained" by them. That is, the coefficients d; have been
ordered as d/:y, as discussed in Section 4. For example, in the first
line of Table i (for January mean winds over Cape Kennedy), a(,) and
b(l) are, respectively, a,xs and bos, so that j = 23 is used in the trigo-
nometric terms that they multiply.

14




Coefficients are given in Tables 1 and 2 for each wind component
separately, as indicated in the formulas at the head of Table 2, which
are based on (5.8) and (6.1). The two formulas may be combined into
one expression, in complex notation., Thus, the mean January wind over
Cape Kennedy may be written as

tp 4 = (2-61 +0.126 1) - (0.054 - 0.003 i) h

(0.575

0.014 i) cos 23x h/12 - (0.014 + 0.575 i) sin 23x h/12

(0.530 + 0.100 i) cos x h/12 + (0.100 - 0.530 i) sin = h/12

+

(0.044 + 0.173 i) cos 22x h/12 - (0.173 - 0.44 i) sin 22x h/12
+ (0.043 - 0.140 i) cos 2x h/12 + (0.140 + 0.043 i) sin 2x h/12,

(7.1)

The superscript "s" indicates that the values of gﬁ M obtained from
(7.1), and from Table 1 generally, are for "standardized® values. They
must be multiplied by the standard deviations of the wind components for
the appropriate level to give values approximating the observed means.

For example, evaluation of (7.1) for h = 10, i.e., 12 km, gives
2.41 + 0,226 i. When each of these values is multiplied by the standard
deviation of the corresponding wind component at 12 km over Cape Kennedy
in January, 16.04 and 14.24 m/sec, respectively, estimated wind speeds
are obtained which may be compared with the observed means:

Estimated X40 = 38.66 Y10 = 3.22
Observed 44,04 3.26.

In Figure 2, five hodographs are shown for the mean January winds
over Cape Kennedy. 1In the upper panel, one hodograph depicts the actual
means, in meters per second, while a second one shows the effect of
dividing the speed at each level by its standard deviation, and expres-
sing the result as a departure from the least-squares plane. The "trend"
hodograph is centered at the origin, and is in units much smaller than
those of the original values.

The lower panel of Figure 2 shows three hodographs, computed by
Fourier polynomials, not augmented, i.e., as variations about the least-
squares plane. The "one-term'' hodograph is a circle, representing only
the j = 23 term, without the preceding constant and linear terms or the

15



| vo--
| _
= w
20-—
& \.
SMAL unod x 00—
i N I - — (o) _
I&,I\\mAE [T A
T lswuas unod .
20 —
- GIAONIY ONIYL HIM ]
3Z1TYIRION SONIM NV3IN-0 " SWH3L $9°2Y oMsn
Wy3L 3NO
Ne A SHAVHOOGOH H3WNO4 @ELLY |40
| / M N \\ —
| ] l ] | |~ T | H | | | | |
L | LR L T T LI I N N O O O A O I Frrr17+v04v 71 11 LR
— ] o't g0 0o s0- - -
n 908 w) X 7]
B b, ¥ 2l
O\I‘I’ -y
B > \Ie Illb\VAw T
— g p— et $ 2 00—
— - - l\.\\w.\ ‘<X|~ e Ny toevu) —
vl
— | ® 03AONZY ON3YL, A
= e Ay B
| € wy2 2 =2 -0 —]
g.ws\.ev lln . EU s0
A R el 5
— e —
Lo\\l\:ld-\..-llllllu\ WNIBINO a3
n g“’l\ ¢ 1961 -9561 ANVANVS -
@ YQINO4 “IHIAYNYD 3dVD -
— ¢ SHAVYHOOQOH GQNIM NV3IW
= (o0s/w) X -
ov s¢ o¢ s2 oz 1

[ S O O N N T O U G N W N N O A I A B

o1 . 0
I N N OO U N S A SN A0 N S Y WA A

L L

16




final three terms. The "two-term" hodograph represents computation of
the j = 23 and j = 1 terms in (7.1), without the constant and linear
terms or the final two terms. The "four-term" hodograph presents
results of using all terms of (7.1) except the constant and linear.

Shown as dots in the lower panel of Figure 2 are the same points,
for each 1-km level, as in the "trend removed" hodograph of actual winds
in the upper panel, The thin lines from these dots to the "four-term"
curve indicate the extent of the vector difference between the observed
mean winds, at each level, and the values computed from (7.1). The sum
of the squares of the lengths of these thin lines is the Sﬁ,M of (6.3),
for M = &,

For the individual soundings over Montgomery, no estimates of wind
variance at each level were readily available, The observed values were
assumed to have the same variance, and no adjustments were made. Thus,
the coefficients in Table 2, when introduced into the appropriate formula,
give estimated winds directly in meters per second.

8. Discussion

Under each pair of coefficients in Tables 1 and 2 are two additional
entries: the value of the index j for the pair, and the value of r2, the
relative reduction in variance (4.4) attained by using that term, and all
preceding ones, in the augmented Fourier polynomial,.

For the Cape Kennedy mean monthly wind profiles, the constant and
linear terms alone reduce the variance by 80 percent in summer, but
hardly at all in November and December. Two additional terms provide
r? of 85 percent or more in all months, indicating that augmented
Fourier polynomials of as few as four terms (m = 2) may provide descrip-
tions adequate for some purposes. In nine of the months, term 23 pro-
vides the greatest reduction in variance, followed by term 1, while the
same terms appear in reverse order in the other three months.

For all four Montgomery 6-hourly soundings, term 1 contributes
most to the reduction in variance for both wind speed and momentum
density. But whereas term 23 is second most important for wind speed,
terms 2 (once) and 22 (thrice) have this role for momentum density.
Values of r2 for momentum density are consistently higher than for wind
speed alone. Most of this difference arises in the constant and linear
terms, for which r? is between 75 and 86 percent for momentum density,
but only from 39 to 44 percent for wind speed. This may be a reflection
of "Egnell's law," outlined in Section 3, and requires further study.
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The extent to which these results depend on the particular height
interval chosen also requires additional investigation. The strongest
wind speeds in all the soundings are near the middle of the 2 to 26
km interval studied, which may explain the consistent appearance of
term 1 as contributing significantly to the relative reduction in
variance. Similarly, the importance of term 23 may indicate excessive
level-to-level variability, perhaps actual but also possibly arising from
observational errors and computational procedures in the compilation of
wind information.

These and other considerations indicate that the most fruitful
application of augmented Fourier polynomials to wind profile description
may be their use to describe the position hodograph, as obtained directly
from a balloon or other indicator, and the subsequent differentiation of
the polynomial to provide wind speeds. This may provide considerable
improvement over the present method employing successive finite dif-
ferences, and may give greater detail of the wind profile and of its
derivative, the wind shear.

Other topics for further study are statistical tests for the simi-
larity or differences of two wind profiles, leading to criteria for their
combination. For example, are January and February wind profiles over
Cape Kennedy sufficiently similar that a combined winter profile des-
cribes them adequately? Also requiring study are procedures for pre-
dicting one profile from another, as in the case of the 6-hourly soundings
over Montgomery.

Despite the need for these various extensions of the study, and
further elaboration of the technique, the work reported here shows that
mathematical description of an entire wind profile, either means or
"instantaneous," can be attained with acceptable precision by the use
of augmented Fourier polynomials.

18




8°06=;1  zz=f | 6°18=% Z=f | L'%8=z1  ¢z=[ | 8'ty= 1=f ARESE oo=f

860°0 800°0 060°0~  %50°0 £20°0 zi€°0- $01°0- 99¢°0- | 200°0  600°0 $€Z°0 €9'T | Ddd
2'g6=51  1z=l | L'16=21  ¢=[ | g'gg=za 1=f | 6°Ly=zx  gz=Ff 7°7=z1 0o=Ff

090°0- 2200~ | 8L0°0 €900~ | L90°0- §zZE 0"~ €11°0 ZEE°0- | 000°0  TI0°0- | #90°0~ 6Z'T | AON
07 L6=51 e=f 0°96=1 T1Z=f 8 6= T=f 0°69=1 gz=f 6°'8E=z1 0o=Ff

6L0°0 £€0°0- | €80°0~ €%0°0- | 6.0°0- 0Z%'0= £51°0 GEY*0- | €10°0- 6L0°0=- | ¥90°0 €%°T | 10O
£°86=51 z=f 6°L6=z3 zz=[ %" L6mp 1=f L°08=z3 cz=f 0°29=z1 00=f

£90°0- 850°0 Z10°0-  £60°0 801°0~ 866°0- 6€1°0 $86°0- | 810°0~ LGT°0~ | #L1°0 90°T | daS
8°'86=_1 z=f 7'86=51  zZ=f G L=z 1= 2°'68=z3 gz=Ff 86 L=z 00=f

zv0°0- 691°0 620°0 0L1°0 920°0~ 685°0~ L£2'0 6.5°0~ | €20'0- €92°0- | 80ZT'O 9¥'1 | Onv
1°66=2 z=f 6'86=z1  zZ=f 9°'g6=z1 1= L T6=z3 gz=f 0'%8=z1 oo=Ff

790°0- £L0°0 100°0=  0Z1°0 L60°0 Sy 0= 2820 €15°0~ | 9€0°0~ L/[Z°0- | 862°0 T¥°1 | TN
T 66=571 z=f L°86=33 1= L* 6=z 1= 2°68=z1 gz=f 1°0L=z3 0o=Ff

1Z1°0- 120°0~ | 080°0- 6%I°0 %01°0 %85 °0- %€Z'0 079°0- | 120°0-~ 2z0Z'0~ | §€0°0- £9°T | NAL
0°66=51 z=f g L6=51  zz=l B H6mz 1= G TL=p gz=Ff $°'8g=z1 00=Ff

Ze1'0- LEOT0- | SST'O 101°0 %£0°0~- 0%5°0- 050°0 Z¥9°0~ | TZO'0~ 860°0-~ | 061°0 €%'T | AVH
1'86=51 ze=f L G6=za z=f 6'C6mz3 gz=f G 8G=a1 1=Ff 6°6T=z1 00=F

8Z1°0 9%0°0 8ET°0- 060°0 160°0 605°0- L00°0 8¥6°0~ | 0T0°0~ 960°0= | SS0°0~ 69°'T | HdV
9° 6=y g=f 6°96=51 z=f L' G6=z cz=f 8°29=1 1=f 1°9Z=52 oo0=f

£80°0 LS0°0~ | €0T"0~ %L0°0 250°0 SL9°0~ €L1°0- $69°0- | ¥T10°0- 980°0- | 0ZE'0 06°T | UVH
' L6=51 z=f 9'26=51  gz=f 8' 8=z 1=f T°gC=z gz=l 7' LT=z1 oo=F

89170~ LL0"0 181°0 1%0°0 £L0°0~ z6%°0~ 6€0°0- 606°0- | L10°0- 8%0°0-~ | 60%'0 TT'7 | €4
2'96=_1 z=ft Lg6=53  zz=[ | 0°06=pz2 1= | 9°6g=p1  ¢g=[ 6 9T=z1 00=F

0910~ £%0°0 €L1°0 %00 001°0- 0€5°0- #10°0 €[G*0~ | €00°0 %50°0- | 9ZI'0 19°CT | NVI

(#)q (e (€)q (e (®)q s (Mgq e 00q oog £ X5

196T-966T ‘VUINOTL ‘XAANNAM AdVD WIAO SANIM ATHINOW NVIH ¥Od ‘21 “HONVIMVA HATIVITY
NI NOIIONATY FAILVINWND GNV ‘STVIWONATOL ¥HATHNOL QAINAWOAV 0 SINFIDIAIICD

‘T AT4VIL

19



@@l soo (@q + ¥l urs e) + (@[ soo (Vg

tee 4

(880 uts (@)q - ¥E[ soo (Be) + (HIf urs (T)q

:£q uaAT8 ‘ZT/uyr = H 233ym ‘(ISH wi g 3Ie Sur3laels w ur)

+ 0T urs (De) 4+ (y°°q + %)

UL

(HEC uts (€)q - WL soo (Fe) +

- H'T soo (D)e) + (y°°r + *o)

Ux

. . . - . - - . = “ﬂ
9°96=2  z=f 7'66=51 12=f |v'g6=z1  T2=f £ 16=z1 1=f £98=z2 0o .
6€8°0  ¥82°0 [1L°0=  %68°0- | 0ZL°0- 6£6°0- | 6€L°T- €¥S'0- | 89L°0  €LL70- | 697¥I" 0L°ST | 00€0
i . ceo— =r
g'g6=,1 ¢g2z= 8 6=, 7=l |L'g6=2  zz=l | S'z6=zx  1=f 7'€8=z3 _oo=f
€9€°6- 008°0- | %16°0 260°0 | 9770~ S0S*0- | vz~ 9z8°0- | Tw6'0  8€9°0- | TLTLI- LSTET | 0012
2 16=,1 g=Ff 0°06=51 61=f |z°88=z ze=f G 8=z 1=f wiwl=gt . oo=Ff .
0€9°0 £99°0- { 0SL°0- z68°0- | 60%°0- i T~ | 6€€°z- €621~ | 916°0  60§°0- | €9°L1- 9L'TT 0061
9°96=21 ¢€z=l 9'66=p1 7=l |L°€6=57 z=f | #'16=p2 1=t €'08=1 __oo=t
£89°0-  [S6°0- | TZE€'T-  %0S°0- | LSE'T cv6°0- | 66%'c- 9£0°1- | T€Z°T S0L°0- | 26°ZT-  HI°ST | 0060
A3Tsua@ uM3uUIWON
g'gg=_1 zz=f £°68=51 z=f [£°08=32 gz=f G*99=51 1= 6 =21 00=f .
908°¢-  L69°0- | 0€9°1 21872 9/6'%  TI9'E- | 19T1°1~ 8T¥°L- | €160 9%1°1- | 88°tZ- T¥°8C | 00€O
g g6=_1  L1=f $'26=51 =l |v°88=z2 gz=Ff 8°89=21 1=f £ Ty=g1 oo=F
995°0 1891~ | 019°2 0%8°1 66%°€ 120°9- | L0S°T~ 6TIT°8~ | 2S0"T 9T0°1- | T%'9Z- 9%°9T | 001
g L8=,1 z=t G G8=_1 zz=l |6°78=31 ge=f 9°19=z2 1=f 9 8E=z1 00=f
808°1 09Z°1T | %S1°0- Gov°z- | %09'%  €yL'y- | TL5°0~ €%8°L- | 0S0°T €06°0- | ¢S'lT-  S6°CT | 00S1
0°16=51 z=l 9788=_1 zz=l [g°68=z1 gz=Ff 9 1L=52 1=F 1 yh=z1 oo=f
6LL°C 6L0°0 €6z'g-  910°0- | 91L°€ ZvS'6~ | S€0°€- 7688~ | S9€°T  9%0°1- | T9'E€E-  H0'6C | 0060
spaads puiM
("q (e (€)q (e @)q @)e (Mq Me 00q 00g £ Xa WNOH
o+ 4 (HEC soo (9)q + uE[ urs (D) 4

4y 3y81ey e ‘Y4 pue Yx ‘sjusuodwoo puip

9661 AYVONVE 01-6 ‘VIVEVIV ‘X4THODINOW WAAO ALISNIQ WAINIWOW NV QAddS ANIM ¥0d ‘21 ‘HONVI¥VA

JATIVIZY NI NOIIONATY FAILVIAWAD ONV ‘STVIRONATOd ¥ATUNOL JAINIWONY J0 SINAIDIILIHOD

‘¢ TI9VL

20




APPENDIX A
ESTIMATION OF COEFFICIENTS

Complex coefficients dj = a; + i by, for j =0, 1, ..., N, are to
be estimated from a set of v = Izl +1 complex numbers T SO as to mini-
mize the sum of the squared differences

N
= 2 Sfl;h,M = z(nh - T“n;M) (ny, - T‘1’1;1’1)* (a-1)
h=0 h=0

for each index set M containing 1 s m = vy elements, when the estimators
T.M are obtained from
9

qh;M = Z dj exp (iA jh), A= 2x/v. (A-2)
jeM

The v numbers {n;, ] are assumed to represent values or observations
at v equal intervals R =0, 1, ..., N. These may be intervals of time
or space; in the specific applications to be made here, they are equal

intervals of height, and the numbers {n,} represent wind vectors at suc-
cessive levels in the atmosphere. These vectors are expressed as depar-
tures from a plane of best fit, in the sense of minimizing variance, to
the basic data; that is, any linear trend with height has been removed.

For each value of h

= * *
Si,h M= Oy = Ty O = Ty

jh % * -iA jh
> <ﬁh - dj e > (A-3)
M

]
7N
]
=3
1
[~ N
e
o
‘-lu
bt

* The asterisk, *, denotes the complex conjugate.
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%*
because Tump = |y |Z = W, in the notation of Section 1. Since

exp [iA h(j - k)1 = 1 when j = k, the second term becomes

B - % i\ h(j-k)
—Z |dj|2 + Z Zdj d e . (A-4)

Expression of n exp (- iA jh) as O 5 + iﬁhj permits the final
term in (A-3) to be written as

* -iA jh _ " -i) jh
' Z dj e = L dj T e
jeM M

.

(aj - i bj) (ahj + iahj). (A-5)

g

Since |d:|Z = a? + b2 and £ exp [iA h(j - k)] = 0, the sum of
squares (A-1)"to be minimized becomes

N N
2 2 2
Z T],hM Z Wh-l-v Z(aj+bj)

-2 (aj Oy * bJ. ahj). (A-6)
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The usual minimization procedures give, for each value of j,

BSZ_M
T}'— =2va, -2 )o.,
3 J J
h=0
Aa-7)
52 N
;M
=2y b, -2 .
ob Vo3 z Phj
=0
Setting these derivatives equal to zero gives
N N
1 1
. == . b, == .o -
%3 vZahJ’ i vzﬁhJ (4-8)
h=0 =0
Consequently,
N N
_ 1 . _1 PR _
dj—-vZ(ahj+15hj)—Vthexp( iA jh). (A-9)
h=0 h=0

For computation, the real and imaginary parts are evaluated separately:

N
aj =% 2 [uh cos (A jh) +Vh sin (A jh)1,

h=0

N (A-10)
bj =-]1'7 Z [vh cos (A jh) - u sin (A jh)].

h=0
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In polar coordinates,

N
aj=-i-zwhcos (gh-kjh),
h=0
(A-11)
N
b =lZw sin (¢ - A jh)
j v h h ‘
h=0

Use in (A-2) of any set of m of these values for d: = a; + 1 bj
will insure that the resulting estimator, np;M, when introduced into
(A-1), will minimize the sum of squares Sﬁ;M- When m = v, i.e., when

the sum (polynomial) has as many terms as the original observations,
$2.m = 0. For smaller sets, i.e., for m < v, the sum of squares S3;M
will depend on the exact composition of the set M. Thus, S‘z,M can be
computed for each of the y sets M in which m = 1, i,e,, for 'one term
only, and for the v(v + 1)/2 sets of two terms each, and so on, to find
the combination giving an acceptably small S%;M from the smallest set M.

However, when the coefficients {dj} are orthogonal, in the statistical
sense, the contribution of each is independent of that of the others, and

§2 = Z s2 .. A~12)
nsM UHR| ¢
jeM

Then, SZ;- can be computed for each orthogonal d. and ranked in descend-
ing order to determine the minimum set M for whith SZ;M ts acceptably
small, The extent to which the coefficients {dj], estimated by (A-9),
(A-10), or (A-11), satisfy these requirements iS5 examined in Appendix B.
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APPENDIX B
ORTHOGONALITY

Two different kinds of orthogonality are involved in the develop-
ment of complex Fourier polynomials for the respresentation of wind
profiles. One kind is that of the series of orthogonal polynomials
used to represent a sounding. In such representation, functional ortho-
gonality requires that

A dhe idkh _ [v, j=k
0, j =k

Use of such a system of orthogonal functions permits judgement of
thie adequacy of the representation in terms of the sum of the squares of
the coefficients., This sum measures the sum of the squares of the dif-
lferences between the polynomial representation and the function being
fitted, after removal of linear trend. When orthogonal functions are
used, a smaller number of terms can be selected without recomputation
of coefficients.

Another kind of orthogonality appears when a sounding is viewed
as a collection of random variables. Then the coefficients {dj} in the
Fourier representation (5.7) are also random variables, since they are
linear combinations of the original random variables (6.2). Orthogonality
of the system of coefficients {dj] is tantamount to their being uncor-
related. Uncorrelated Gaussian random variables are statistically
independent - a very highly desirable property in computing probability
statements. The basic physical quantities, i.e., balloon displacements
or wind speeds, expressed in cartesian coordinates, are usually assumed
to be approximately Gaussian. Hence the coefficients {dj]}, being linear
combinations of them, also should be approximately Gaussian, especially
because of central limit effects,

Orihogonality of the {dj] is almost impossible to establish unless
the {uh} are second-order stationary with a real covariance function.
The need for second-order stationarity, that is, that the covariance of
(> ﬂg) depend only on the difference Ih - 2!, appears in the evalua-
tion of the expression for the variances of the individual d;. When the
expectations of the {nh}, and hence of the {dj}, are zero, the variance
of each dj is given by

N N
E(dj d’J‘f) = y72 }: Z exp [iA j(2 - h)] E(ny nz)- (B-1)
h=0 #=0

* The asterisk, *, denotes the complex conjugate.
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This involves the covariance of the observed values, or their departures
from the plane, which in turn depends on the correlation (r) between the
two components:

E(qh q;) = E[(uhuz + vhvz) + i(uﬂvh - uhvz)]
(B-2)

[r(uh,uz) + r(vh,vz)] + i[r(uz,vh) - r(uh,vz)] .

Second-order stationarity requires that these correlations depend,

for each variable u or v, and for any separation h - £, denoted as T,
only on the separation:

r(y, uz) =r,(h-yp) =1 (1) = r (-1. (B-3)

Certain properties of the separation T are needed:

T=h -4, -N=s71s+N,
(B-4)
max (~t, 0) £ £ s min (N - ¢, N).
In this notation, (B~2) becomes
E(qh HZ) = {ru(r) + rV(T)] + i[ru§(-r) - ruv(T)J= c(v), (B-4)

where C may be called a correlation function; C(0) = 2, because
ry(0) = ry(0) = 1. 1In terms of this function C, the expression (B-1)
for the variance is

+N

-2 }Z C(t) exp (iA jT) (v - 1)
-N

*
E(dy dF)

]
<

(8-5)
+N

= 1 }: 1 - t/v) cos (A\j7) ﬁ[C(T)]
-N

N
vl [C(O) + 2 }Z ( - ©/v) cos (A\j1) R C(r)]
1
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because the variance is real-valued. [All summations are over the range
of 7 given by (B-4).] Similarly, the covariance function for the coef-

ficients is
N N
v 2 }Z j;I exp [i% kst - jh)]E(nh n;)

*y =
E(dj d) =
h=0 g£=0
(B-6)
N
= v-z z C(T) exp (' iA jT) Z exp (i?\ zp)’
=-N £

p= k'j,

because k2 - jh = gp - jt. This must be zero for d; and dy to be ortho-
gonal, To determine whether such is the case, (B-6) must be examined
term by term, invoking the orthogonality properties of trigonometric
series,

Since
m
j_ l_:;lfiti ,
r =1 .-r
j=0
r/ v
1l - [exp (17\P)] 0
S T - [exp (iW)] ° P*O,
Z exp (iM ip) = - (8-7)
i=0 TN+ 1=y, p = 0.

The las: summation in (B-6), over 2, is, by definition (B-4), from
max (-7, 0) tomin (N - 7, N}, and hence depends on T as well as on
p. It may be denoted as y(t, p):

=0,
0 {0§,@§ N;
. 1 - exp (-iA pT >0,
7(t> P) =:{:eXP (inp) = T exi %i%p)P : '{o 4 N- 13
£ ..
_ 1 - exp (-iA pPT) 7 <0,
1 - exp (iNp) - 1= 4 < N.
(8-8)



Thus, y(-1, p) = -y(1, p). In the expression for y(t, p) when 7 >0,
multiplication of numerator and denominator by 1 - exp (-iAp) gives

2 - 2 cos Np

y(t, p) = T > 0. (B-9)

This is zero when pt is an integral multiple of vy and is small for =7
such that pt is close to an integral multiple of v.

Next, the correlation function C(7) must be examined. It is real
if and only if it is even, i.e,, if ryy(-1) = ryy(1). In this case,
(B-6) becomes

< |

N N
B(d,4) {Zcm e ep il + ) e e“”'[-m,p)/vl}
=1

=1

< j=

N
{- 2 c() [y(e,p)/v] [P - e'“”']}
=1

(B-10)

=

N
v{- Z () [y(r,p)/v] [21 sin jm}
=1

0(%).

The summand of equation (B-10) will not be large since IC(T)'é c(0) = 2
and tends to zero as T becomes large. The multiplier sin iAt will have
a dampening effect for the smaller values of r.

Thus, E(djdﬁ) apparently is always small, although that it is
identically zero for all 1, as is required for complete orthogonality,
has not been proved. Actually, E(d-dﬁ) —»0as N+ 1 =50, i.e., as
more and more levels are used and tﬂe discrete model approaches a con-
tinuous one. Thus, the question of orthogonality may be analogous to the
general problem of the extent to which large sample theory can be used
for small samples, or to which properties of a continuous function can be
applied to a discrete one. For the present purpose, the assumption of
orthogonality seems reasonable.
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